Multiple Stochastic Pathways in Forced Peptide-Lipid Membrane Detachment
نویسندگان
چکیده
منابع مشابه
Forced detachment of the CD2-CD58 complex.
The force-induced detachment of the adhesion protein complex CD2-CD58 was studied by steered molecular dynamics simulations. The forced detachment of CD2 and CD58 shows that the system can respond to an external force by two mechanisms, which depend on the loading rate. At the rapid loading rates of 70 and 35 pN/ps (pulling speeds of 1 and 0.5 A/ps) the two proteins unfold before they separate,...
متن کاملPhosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways
Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, thei...
متن کاملMultiple states of beta-sheet peptide protegrin in lipid bilayers.
Protegrin-1 (PG-1), a beta-sheet antimicrobial peptide, was studied in aligned lipid bilayers by oriented circular dichroism (OCD). All of its spectra measured in a variety of lipid compositions were linear superpositions of two primary basis spectra, indicating that PG-1 existed in two different states in membranes. We designated these as state S and state I. The state assumed by PG-1 was stro...
متن کاملModulation of membrane surface curvature by peptide-lipid interactions.
Recent reports on the interaction of cardiotoxin and melittin with phospholipid model membranes are reviewed and analyzed. These types of peptide toxins are able to modulate lipid surface curvature and polymorphism in a highly lipid-specific way. It is demonstrated that the remarkable variety of effects of melittin on the organization of different membrane phospholipids can be understood in a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2019
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.2454